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Outline
• In this lecture we are going to do three things

• We will learn the basics of how a photomultiplier tube works. This is a very 
important sensor.  The electrical signal out of a PMT has been analyzed in 
a separate lectures.  

• In these set of slides we will derive the expected charge spectra for photo-
multiplier tubes.  The techniques can be applied to other detectors as well.  

• To derive these we will need some powerful mathematical tools.  We will 
get an introduction to these tools.  

• The assumption in these slides is that we have integrated the charge coming 
from a PMT. The only sources of noise is the PMT itself.  

• Reference: See the guide from Hamamatsu, Photomultiplier tubes: Basics and 
Applications (2007) 3rd edition.  There are many papers in journals such as 
Nuclear Instruments and Methods.  



Photo-Multiplier Tube
• The photoelectric (Hertz 1887!) 

causes metals to eject electrons in 
response to light.  

• Einstein’s Nobel prize was for 
explaining the photoelectric effect 
with quantum mechanics !   

• Electric fields accelerate and 
multiply the primary electron in 
several stages. Each stage has 
multiplication of ~4-5.  

• Typical Gain = AVkn ~ 106- 107 

where V is the typical voltage ~ 
few 1000 V. 

• Time resolution < 10 ns.   

• Transit time can be <1 microsec 

• PMT first stage is sensitive to 
small magnetic fields.  

• Many clever geometries. 

Photon

From Hamamatsu
3



-2.×10-8 0 2.×10-8 4.×10-8 6.×10-8 8.×10-8 1.×10-7

-0.015

-0.010

-0.005

0.000

0.005

Timesec

V
ol
ts

These are a couple of typical pulses.  
We are going to integrate pulses like 

these to get the total charge.  



R has two grandparents. Each is going to give R some money for 
her birthday. $10, $20, $30, or $40 with probability of 0.1, 0.2, 0.3, 
0.4.  What is the probability that R gets a total of $50 ? 

How do we make a method that provides an answer quickly ? It is 
called a characteristic function.  It keeps track of numbers. Gauss 
described this as a clothes-line to find the number that you need.  

ϕ(s)R = 0.1e10s + 0.2e20s + 0.3e30s + 0.4e40s

To get the total you multiply the char. functions.  

ϕ(s)R1+R2 = (0.1e10s + 0.2e20s + 0.3e30s + 0.4e40s)2

ϕ(s)R1+R2 = 0.01e20s + 0.04e30s + 0.1e40s + 0.2e50s + 0.25e60s + 0.24e70s + 0.16e80s

Notice that you can just read off the probability that R gets $50 
The characteristic function always exists and encodes all 
information about a probability density



Some definitions
X  is a continuous random variable with probability density function PX (x) then the 
characteristic function is 

ϕX (k) ≡ E[eikx ]= PX (x)eikx dx   
−∞

∞

∫
X  is a random variable,  x is a realization of X  over its domain. E[ ] is the expectation 
value of its argument.  What is the point of the characteristic function ? 
It is a way of tagging the probability number with a unique number (eikx ). It is as if 
we are storing the number in a file folder with a tag.  

 Notice ϕ(k = 0) = 1  since it is the integral of the PDF. 

the mean is given by x = −i ∂ϕ
∂k

(k = 0),  and 

Higher derivatives lead to higher moments.... 

If X  and Y  are two random variables and z = f (x, y)   then the Characteristic function for Z is

ϕZ (k) = eikf (x,y)PX (x)∫∫ dx QY (y)dy

To get the moments of f (x, y) often it is not necessary to evaluate the integral. 
e.g. f (x, y) = x + y ⇒  ϕZ (k) =ϕX (k).ϕY (k)  .... leave it for you to prove this 



basics of photomultiplier
Mean of λ photo electrons come from the photo-cathode to the first 
dynode.  

Each electron generates 𝛼 electrons at the first dynode.  

Each subsequent stage produces gain of few electrons per 
incoming electrons leading to gains of ~106-7

photocathode  
mean λ photo-electrons

𝛼 electrons per 
incoming electron

If mean of λ photons convert in a photo-sensor with a mean gain of 𝛼 
electrons per photon what is the distribution of the output number of 
electrons ?

Basically, an average of λ packets arrive each with an average of 𝛼 items 
in each packet.  What is the mean and variance of the total number of 
items ? How do we calculate this… 



Distribution of incoming electrons with Poisson mean of λ
K  is the number of electrons, a discrete random variable with probability mass function

PK (k) = λ
k

k!
e−λ

Characteristic function for this is the expectation value of eisk

ϕK (s) ≡ E[eisk ]= eiskPK (k)
k=0

∞

∑ = eiskλ k

k!
e−λ

k=0

∞

∑ = ee
isλe−λ = eλ (eis−1)

This function has many interesting properties.  

Similarly, the distribution of photons from each electron has probability 

PL (ℓ)=α
ℓ

ℓ!
e−α   and a similar characteristic function ϕL (s).

We have labeled the two  functions to distinguish them from each other.
Additionally recall that the mean for a Poisson distribution with parameter λ  is 
E[k]= λ  and the variance is also E[k2 ]− (E[k])2 = λ

Poisson probability mass function and its Char. function 

secondaries



Debatable points
• Why should the number of ejected electrons from the photo-cathode be 

Poisson distributed ? 

• Recall that only a small fraction of total photons from a scintillation 
event are caught by the PMT, and then with an efficiency of 20-30% 
converted to electrons.  And so this is a Poisson/Binary process. The 
result is a Poisson distribution for the photo-electrons. 

• Why should the emission from the first dynode be Poisson distributed ?

• If the dynode is uniform then only a small fraction of total excitations 
from a penetrating electron results in an emitted electron.  However, 
there could be many geometrical reasons why the dynode response 
is not uniform. For exampl, an electron could miss a dynode entirely.  

• And so both of these are reasonable assumptions for well performing 
detectors in normal situations.  



Simple calculation first
Before we do the full calculation we will perform an intuitative calculation. 
Obviously λ  and α  are Poisson parameters.   Total charge will be called Q.  

Q = λ iα
The fractional variance of Q will have contribution from the fluctuation of the incident number K and 

then the fluctuation in the secondary number Li
i=1

K

∑   which is a sum of K random numbers each Poisson

 distributed with parameter α

Var[Q]
Q 2 = Var[K ]

K 2 + 1
K

× Var[L]
L 2 = 1

λ
+ 1
λ
i

1
α

Var[Q]= λα (α +1)

Suppose L is actually Normally distributed with parameters α  (mean) and σ (standard deviation) 
Var[Q]
Q 2 = Var[K ]

K 2 + 1
K

× Var[L]
L 2 = 1

λ
+ 1
λ
i
σ 2

α 2

Var[Q]= λ(σ 2 +α 2 )



Now calculate the PDF for the total charge

Total charge is  a discrete random number Z. 

Z = Li
i=1

K

∑   

This is a sum of K random numbers, each is the count from an electron gain. 
Now, it is obvious that the mean number of total electrons must be λ ×α ,  where
λ   is the Poisson mean for the number of electrons and α  is the Poisson mean for 
the gain or the number of electrons resulting from the multiplication of an electron.  
However, the random number for the total number of photons is not a product of 
the two random numbers K (the number of electrons) and L (the number of photons). 
The characteristic function for the number Z is 

ϕZ (s) ≡ E[eisz ]= eiszPZ (Z = z)
z=0

∞

∑
Here PZ  is unknown.  



Characteristic function of Z
Start with the generating function for total number Z 
(recall that K is the r.v. for electrons and L is the r.v. for gain on each electron) 

ϕZ (s) ≡ eiszPZ (Z = z)
z=0

∞

∑ = E[eisz ]= E[e
is Li

i=1

K

∑
K = k]

k=0

∞

∑ i PK (k)

= E[eisl1eisl2 ...eislK K = k] i PK (k)
k=0

∞

∑
This says that the total expectation for eisz  is the same as  
the average of the conditional expectation for k electrons (averaged over the 
probability of obtaining k electrons).  This is the law of total expectation.  
Each random variable Li  is independent, and so each has the same char. func. 

ϕZ (s) = (ϕL (s))k
k=0

∞

∑ i PK (k)

This leads to a compact expression.  

ϕZ (s) = (eα (eis−1) )k
k=0

∞

∑ i
e−λλ k

k!
= eλ (eα (eis−1)−1)



expressions for Poisson and Normal gain
For Poisson gain 

ϕL (s) = eα (eis−1)

For gain with normal PDF.   N(µ,σ 2 )

ϕL (s) = eisµ i e
− s

2σ 2

2

Generally for Poisson PDF with α >>1 we can use Normal PDF with µ=α  and σ 2 =α

For Poisson 

ϕZ (s) = (eα (eis−1) )k
k=0

∞

∑ i
e−λλ k

k!
= ekα (eis−1)

k=0

∞

∑ i
e−λλ k

k!
When we invert this to get the probability we get a formula with an infinite series

PZ (n) =
e−λ + e−λλ k

k!
i e−kα      for n = 0

k=1

∞

∑
e−λλ k

k!
i
e−kα (kα )n

n!
     for n > 0

k=1

∞

∑
    It is important to be careful about 0

This is the C.F. for a normal PDF. 

This has many names:  compound Poisson, jumping Poisson, etc.



Normal distributed gain
For Normal 

ϕZ (s) = (eisµ i e
− s

2σ 2

2 )k
k=0

∞

∑ i
e−λλ k

k!
= (eisµk i e

− s
2σ 2k

2 )
k=0

∞

∑ i
e−λλ k

k!
= e

λ eisµ−s
2σ 2 /2−1⎡

⎣⎢
⎤
⎦⎥  

When we invert this to get the probability we get a formula with an infinite series

PZ (z) =    e−λλ k

k!k=1

∞

∑ i
1

2πσ 2k
e
− (z−kµ )2

2σ 2k    for z > 0

There is some care needed here because z is now a continuous variable, and PZ (z)
is now a probability density function.  
(When the bin size of z is chosen to be δ z = 1,  we recover an approximation to the 
probability mass function for a Poisson jumping distribution. )
One still needs to obtain a well defined  probability at z = 0. For this we go back to 
setting µ=α  and  σ 2 =α

PZ (n) ≈
e−λ + e−λλ k

k!
i
e−kα /2

2πkα
     for n = 0

k=1

∞

∑
e−λλ k

k!
i

1
2πkα

e
− (n−kα )2

2kα      for n > 0
k=1

∞

∑



comparison of plots
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λ=2, α=6

Blue dots are for Poisson/Poisson, Red curve is Poisson/Normal approximation
λ= {1,2,6} is the Poisson parameter;  α= {1,2,6} is the Poisson parameter for the jump
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pedestal and background
The signal is going to be convoluted with background processes.  First we have to figure out
what the background looks like in the absense of signal.  
We take an integral (or sum) in a given time interval over which signal might arrive. If there is 
no signal then we end up adding a fluctuating baseline with some mean.  This will have a Gaussian PDF

PQ (x) = 1
2πσ 0

2
 e

− (x−q0 )2

2σ 0
2

   where q0  is the pedestal 

There is another background process due to emission of real electrons from either the photocathode or one of 
dynodes due to thermal fluctuations. This will have an exponential PDF, but with some chance that there is no
emission at all.  
PD (x) = (1−w)δ (x)+wθ(x)c0e

−c0x    
here w is the probability of emission, δ (x) is the dirac delta function to create a generalized distribution, and 
θ(x) is a step function, and c0  is some constant. 

The baseline fluctuates  
producing noise. When this is 
summed it will contribute a 
Gaussian distributed charge.  
The baseline could be shifted 
and has a fluctuation. 

This is a typical pulse to 
be integrated to produce 
the total signal charge 



background function
We first have to convolute PQ  and PD  to get the background only spectrum for 
B =Q + D ;  We can do this explicitly or just write down the characteristic function.  

ϕB(s) =ϕQ (s) iϕD (s) = eisq0e
−1

2
σ 0

2s2

× (1−w)+w 1
1− is / c0

⎛
⎝⎜

⎞
⎠⎟

as long as the width of the pedestal is small with respect to the exponential 1/c0

PB(x) = (1−w) 1
2πσ 0

2
e
− (x−q0 )2

2σ 0
2

+wθ(x − q0 )c0e
−c0 (x−q0 )

Basically there is a pedestal with some width and a falling exponential background.

What if the pedestal width is too wide ? Then the exponential part of the background will 
get consumed in the width of the pedestal.  
It is possible to obtain the full form.  
                             

C.F. for an exponential has the form 1/(a-is)



Gaussian-modified-exponential 
A normally distributed random number with an addition of an exponential 
random number is called an exponential-Gaussian or Gaussian-exponential. 
The characteristic function is 

ϕEG (s) = eisq0e
−1

2
σ 0

2s2

(1− is / c0 )
The PDF that corresponds to this is 

PEG (x) = c0

2
e
c0

2σ 0
2

2 e−c0 (x−q0 )Erfc 1
2

c0σ 0 −
x − q0

σ 0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

Recall that c0  is the constant for dark rate, σ 0  is the std. dev. of the pedestal and 
q0  is the pedestal.  
Erfc[x]  is the complement of the error fuction.  

Erfc[x]= 1− Erf [x]= 2
π

e− t
2

dt
x

∞

∫
When c0σ 0  is small the Erfc acts like a step function. 
Some care is needed in calculation in case of negative 
or very large arguments. 
The Mean of the PDF is (q0 +1/ c0 ) 
The Variance is (σ 0

2 +1/ c0
2 )
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Couple of definitions

Let's define some PDFs to get a compact expression 
The Normal PDF

N(x :µ,σ 2 ) = 1
2πσ 2

 e
− (x−µ )2

2σ 2

The Exponential modified Normal PDF

EN (x :µ,σ 2,λ) = λ
2
e
λ2σ 2

2 e−λ (x−µ )Erfc 1
2

λσ − x − µ
σ

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

µ :    mean of the Gaussian 
σ 2:     variance of the Gaussian
λ:     exponential decay parameter 



total response
To get the complete response we have to get the PDF for Y  =  B + Z  where 
B is the background and Z is the signal.  B = D +Q as we calculated for the background. 
and so 
ϕY (s) =ϕZ (s) iϕD (s) iϕQ (s)

ϕY (s) = (eisµk i e
− s

2σ 2k
2 )

k=0

∞

∑ i
e−λλ k

k!
⎛

⎝⎜
⎞

⎠⎟
× (1−w)+w 1

1− is / c0

⎛
⎝⎜

⎞
⎠⎟
× eisq0e

−1
2
σ 0

2s2

This is the full and complete expression for the PMT response assuming the gain is 
normally distributed.   We will break this up in 6 pieces and analyze it for special 
conditions.  

ϕY (s) = e−λλ k

k!
(eis(µk+q0 ) i e

− s
2 (σ 2k+σ 0

2 )
2 )

k=0

∞

∑
⎛

⎝⎜
⎞

⎠⎟
× (1−w)+w 1

1− is / c0

⎛
⎝⎜

⎞
⎠⎟
× eisq0e

−1
2
σ 0

2s2

We break this up in three cases for p.e. count: k = 0,  k = 1,  and k >1
And additional two cases  for  (1-w),  without dark rate 
and (w),  with dark rate addition.  
 



all terms broken out for the characteristic 
function. Check that when s=0 the sum adds to 1  

Terms (1−w)× w ×

e−λ × eisq0e
− s

2σ 0
2

2 eisq0e
− s

2σ 0
2

2 × 1
1− is / c0

λe−λ × eis(µ+q0 )e
− s

2 (σ 2+σ 0
2 )

2 eis(µ+q0 )e
− s

2 (σ 2+σ 0
2 )

2 × 1
1− is / c0

e−λλ k

k!
×

k=2

∞

∑ eis(µk+q0 )e
− s

2 (σ 2k+σ 0
2 )

2 eis(µk+q0 )e
− s

2 (σ 2k+σ 0
2 )

2 1
1− is / c0

all these are to be added together. When transformed to PDF, each 
term will convert to a normal PDF or an exponential-normal PDF. 

no signal

single pe

many pe

no dark 
current

with dark 
current



Approximation when pedestal is narrow, also set 
pedestal q0 = 0

Terms (1−w)× w ×

e−λ × e
− s

2σ 0
2

2 1
1− is / c0

λe−λ × eis(µ )e
− s

2 (σ 2 )
2 eis(µ )e

− s
2 (σ 2 )
2 × 1

1− is / c0
e−λλ k

k!
×

k=2

∞

∑ eis(µk )e
− s

2 (σ 2k )
2 eis(µk )e

− s
2 (σ 2k )
2 1
1− is / c0

no signal

single pe

many pe

no dark 
current

with dark 
current

σ 0 <<σ  and σ 0 <<1/ c0

 also set q0 = 0



when w=0 or c0 is very small

Terms (1−w)× w ×

e−λ × e
− s

2σ 0
2

2 1
1− is / c0

λe−λ × eis(µ )e
− s

2 (σ 2 )
2 eis(µ )e

− s
2 (σ 2 )
2 × 1

1− is / c0
e−λλ k

k!
×

k=2

∞

∑ eis(µk )e
− s

2 (σ 2k )
2 eis(µk )e

− s
2 (σ 2k )
2 1
1− is / c0

no signal

single pe

many pe

no dark 
current

with dark 
current

σ 0 <<σ  and σ 0 <<1/ c0

 also set q0 = 0



all terms broken out for the PDF in compact notation 

Terms (1−w)× w ×
e−λ × N(x :q0,σ 0

2 ) EN (x :q0,σ 0
2,c0 )

λe−λ × N(x :µ + q0,σ
2 +σ 0

2 ) EN (x :µ + q0,σ
2 +σ 0

2,c0 )

e−λλ k

k!
×

k=2

∞

∑ N(x :µk + q0,σ
2k +σ 0

2 ) EN (x :µk + q0,σ
2k +σ 0

2,c0 )

all these are to be added together to get the full PDF. 
The sum is applied across the row. 

no signal

single pe

many pe

no dark 
current

with dark 
current



plot some examples

plot λ w q0 σ 0 µ σ c0
1 3 0.3 1 0.2 5 2 10
2 3 0.3 1 0.5 5 2 10
3 3 0 1 0.2 5 2 10
4 6 0 1 0.2 5 2 10

with dark current, narrow/wide pedestal

no dark current, less/more p.e. 
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example
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The probability of dark pulses is set to zero,w=0. The values of other parameters are set to 
beλ=5(mean photo-electrons),q0=1(baseline shift),σ0=0.2(baseline fluctuation),μ=5(mean 
gain),σ=0.5, 1, 2(gain fluctuation) for the magenta-dashed, green-dashed, and blue-solid 
curves, respectively



some data

• I have provided some data from a HPK R5912-mod 10 stage PMT.  It has very low 
dark rate. An LED was flashed thru a fiber at the PMT.  

• Data was taken with a scope and so the pedestal noise is very low also.
• There has been no selection of data. 5000 pulses were integrated in a fixed time 

interval and the LED pulse charge plotted with no cuts.    
• This PMT is B10-1   at 1430V (left), and 1460V (right)  
• The red curve is not a fit, I just guessed at the parameters.  
• Homework:  fit the 6 spectra I have provided.  
• https://www.phy.bnl.gov/~diwan/software/pmt-spec-code-and-data.tar
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A detailed fit to data.  

The data contains 5000 pulses. The 7 parameter fit resulted in a reduced χ2/DOF=1.08 for 77 DOF. The 
parameters extracted were the baseline shift q0=0.044±0.031pC, the baseline fluctuation 
σ0=0.169±0.018pC, the dark rate probability w=0.30±0.12, the dark rate exponential parameter 
c0=2.1±2.1pC−1, the mean gain μ=2.59±0.06pC,the gain fluctuation σ=0.826±0.057pC and mean number 
of photo-electrons λ=2.69±0.10. The figure shows the best fit curve (red) as well as individual 
components of the spectrum: the charge spectrum for no photo-electron emission (brown dashed) 
shows a small dark rate component as a tail on the positive side; the single photo-electron spectrum 
(black dashed), a two photo-electron spectrum (black dotted), and greater than two photo-electrons (blue 
dashed) are shown separately



conclusion. 
• We derived the full expression for the charge spectrum from a 

typical photo-multiplier.  

• The expression has parameters for the pedestal, width of the 
pedestal, the dark current, and the signal.  

• The method for deriving the expression is very general, and can 
be applied to any detector system with appropriate changes.  

• The expression can be used for a full fit to an experimental 
spectrum. It is important to know the stable conditions under 
which data was obtained.  

• I wrote a paper last year with more detail.  https://arxiv.org/abs/
1909.05373


